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Abstract 

This survey article reviews the theory and application of homoclinic orbits to equilibria in reversible continuous-time 
dynamical systems, where the homoclinic orbit and the equilibrium are both reversible. The focus is on even-order reversible 
systems in four or more dimensions. Local theory, generic argument, and global existence theories are examined for each 
qualitatively distinct linearisation. Several recent results, such as coalescence caused by non-transversality and the reversible 
orbit-flip bifurcation are covered. A number of open problems are highlighted. Applications are reviewed to systems arising 
from a variety of disciplines. With the aid of numerical methods, three examples are presented in detail, one of which is 
infinite dimensional. 
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1. Introduct ion  

Classical Hamiltonian dynamical  systems with quadratic kinetic energy are reversible in the sense that they are 

invariant under a reversal of  t ime and all momentum variables. The concept of  reversible systems in their own tight, 

rather than an extra property of  Hamiltonian systems, goes back to Devaney [56]. For  even-dimensional systems, 

the definition of  a reversibility we shall adopt here is that there is a linear involution R that fixes half  the phase 

variables and under which the system is invariant after t ime reversal. That is 

Jc = f ( x ) ,  x E ~2n, R f ( x )  = - - f ( R x ) ,  R 2 = Id, S = fix(R) ~ ~n. (1) 

The linear subspace S is sometimes referred to as the symmetric section of  the reversibility. There are more general 

definitions of  nonlinearly reversible systems [56] and reversibility for odd-order systems [9,140], but these will not 

concern us here. 

Many theorems concerning Hamiltonian systems have counterparts for reversible systems. One example of  such 

a result is that homoclinic trajectories which are themselves symmetric under the reversibility are of  codimension- 

zero, that is, they persist under genetic perturbation that preserves reversibility [56]. Such a homoclinic orbit 

F = {y(t)  It ~ R} is defined such that y ( t )  is a solution to (1) satisfying 

y ( t ) - - + x *  a s t - + q - ( x ~ ,  F ( 0 ) ~ S ,  w h e r e f ( x * ) = 0 ,  x* ~ S .  
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Homoclinic orbits of dynamical systems are important in applications for a number of reasons. First, they may be 
'organising centres' for the dynamics in their neighbourhood. From their existence one may, under certain conditions, 
infer the existence of chaos nearby (e.g. shift dynamics associated with Smale horseshoes [141,142,144]) or the 
bifurcation behaviour of periodic orbits. Second, if the dynamical system arises as the travelling-wave equation 

for a partial differential equation or system, then homoclinic solutions of it describe solitary waves, which are of 
importance in many fields. Examples of reversible systems of this type arise in water wave theories and optical 
pulse propagation; see Section 2.1 for examples and Sections 5.1 and 5.3 for two particular case studies. Finally, 
Hamiltonian and reversible dynamical systems may arise as (spatial) boundary value problems on the real line. 
Homoclinic solutions of such equations are often fundamental as they represent 'ground states' or 'localised modes'. 

Typical examples occur in structural mechanics; again see Section 2 for some references and see Section 5.2 for a 

detailed case study on an infinite-dimensional example. 
The aim of this article is to review the current state of the theory ofhomoclinic orbits in reversible systems and also 

to list where this theory is of importance in applications. It will be a broad commentary on what is known via normal 
form theory, generic argument, existence theory and numerics. We aim to stress what generically occurs regarding 
multiplicity of secondary homoclinic solutions and the dynamics in a neighbourhood of a primary homoclinic 
orbit. We shall not state general theorems, but it will be noted where the rigourous theory requires important non- 
degeneracy assumptions. At all stages we shall keep applications in mind. If nothing else, it is hoped that this will 

be a first search point for both the pure and applied literature on homoclinic bifurcations in reversible systems. We 
also highlight open problems. 

Since reversibility and Hamiltonian structure are closely related (systems may possess either, both or neither 
properties) we shall aim to highlight similarities and differences between the two cases. In practice many Hamiltonian 

systems are reversible and vice versa. Almost all the examples we touch upon will posses both the properties. For 
such systems the reversibility can be more useful than the Hamiltonian structure, e.g. in defining approximating 
boundary-value problems for numerical investigation of homoclinic orbits (see Section 4.3). In fact, the only property 
of Hamiltonian systems we shall be interested in is that they conserve a first integral (the Hamiltonian function). 

Therefore, from now on, we shall consider the more general concept of 'conservative' rather than 'Hamiltonian' 
systems. 

Principally, this article shall consider only symmetric homoclinic orbits to symmetric equilibria in even-order 
continuous-time reversible systems. Other phenomena - such as heteroclinic orbits, homoclinic orbits to periodic 
orbits (equivalently homoclinic orbits in non-autonomous or discrete-time dynamical systems), systems with addi- 
tional symmetry and odd-order reversible systems - are not treated systematically, if at all. We do however remark 
on some intricate results on homoclinic, heteroclinic, and associated periodic orbits for a third-order reversible 

system arising as the travelling-wave equation for the Kuramoto-Sivashinsky equation [93-95,103,107,126,143] 
There are also interesting results concerning homoclinic orbits to infinity in the Falkner-Skan equation [74,149]. 

We shall also restrict ourselves to the lowest possible dimension of system displaying the phenomena of interest. 

This may appear as a gross simplification, but recently a so-called 'homoclinic centre-manifold' theorem has been 
proved by Sandstede [135,136]. Here it is shown that given an homoclinic orbit in an arbitrary (even infinite) 
dimensional system, then there exist an invariant manifold along the homoclinic solution that is at least class C 1 and 
which contains all recurrent dynamics in a neighbourhood of the homoclinic orbit. The dimension of this manifold 

depends on the linearisation at the equilibrium and on the nature of the homoclinic trajectory itself. Roughly 
speaking, it is the dimension of the smallest possible phase space in which the particular homoclinlc solution may 
generically arise. 

The rest of the paper is outlined as follows. Section 2 introduces a fourth-order equation with general nonlinearity 
that serves as a paradigm for a wide class of reversible systems arising in applications. Its linearisation at the origin 
contains all possible qualitatively distinct combinations of eigenvalues. This includes four open parameter regions 
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and four codimension-one curves, three of  which correspond to local bifurcations. The normal form theory close 
to each of  these local bifurcations is reviewed, with emphasis on consequent existence of  homoclinic solutions. 
Section 3 then goes on to consider what is known about the nature of  homoclinic orbits in each of  the four open 
parameter regions. Section 4 concerns certain global issues, such as methods for proving existence (and stability 
of  solitary waves) and the disappearance of  homoclinic solutions as parameters vary. In applications, one usually 

has to turn to numerical methods for deciding what precisely (out of  a generic set of  alternatives) happens globally. 
Therefore, Section 4 concludes by considering numerical methods for homoclinic solutions in reversible systems. 

The theory and numerics from the preceding sections are applied to three examples in some detail in Section 5: a 
travelling-wave system derived as an approximation to the water wave problem with surface tension; the buckling 
of  long cylindrical shells; and coupled nonlinear Schr6dinger (NLS) equations arising in nonlinear optics with 
quadratic, or X (2), nonlinearity. 

2. A canonical fourth-order equation; local bifurcations 

In what follows we shall adopt the abbreviated notation that reversible applied to a system of ordinary differential 
equations (ODEs) means that the system is invariant under a given reversibility, and that an orbit is said to be 
symmetric if it is itself invariant under the reversibility. I f  there is any confusion as to which reversibility we are 

referring to then we shall say R-reversible, etc. 

2.1. The equation and its applications 

For illustrative purposes, for much of  this paper we shall tailor our discussion to a fourth-order reversible system 

that can be written as the single equation 

u" '  -- bu" + au =-- f (u, u', d ' ,  uI"), (2) 

where a and b are real parameters and f is a nonlinear function whose Taylor series vanishes at the origin together 
with its first derivatives, and the dependence of  f on u I and u Ht occurs as sums of  even-order products of  these two 
variables. Viewed as a dynamical system in the phase space variables (u, u ~, u ~, u ' ) ,  (2) is then reversible under the 

standard reversibility of  classical mechanical systems where the sign of  time, velocity and all odd-order derivatives 

are reversed: 

t --> - t  and R : (u, u',  u", u " )  ~ (u, - u  l, u 'l, -urn) .  (3) 

If, in addition, f has only odd-order terms in its Taylor series then (2) has odd symmetry and is additionally reversible 
under the convolution of  R with minus the identity - R  : (u, u ~, u ~, u I~) w-~ ( - u ,  u ~, - u  ~I, u~"). 

Another possibility is that f is a pure function of  u, independent of  its derivatives. Then (2) can be rewritten as 
a conservative system with conserved first integral 

H = u 'u t" - -  but2 - 1 u " 2  + 2u2 - f ( v )  dv. (4) 

o 

In fact, such a system can be written in classical Hamiltonian form with the first two terms of  (4) representing kinetic 
energy and the last three terms potential energy. Note that there are other choices of  the function f ( u ,  u ~, u", u m) 
that lead to conservative systems (see, e.g. [96, eq. (2)]). 
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We shall be interested in symmetric homoclinic orbits to the origin of  (2). While for certain f there may be other 
equilibria, these will not be of  concern and 'homoclinic '  will be used synonymously with 'homoclinic to the origin' 
and W s'u will be used exclusively to denote the stable and unstable manifolds of  the origin. 

Equations of  the form (2) arise in many contexts. The simplest case is when f = u 2 which comes from (at 

least) two distinct fields. One derivation is in describing travelling-wave solutions of  the Korteweg--de Vries (KdV) 
equation with an additional fifth-order dispersive term, which can be written in a form commensurate with (2) as 

vt = Vxxxxx -- bvxxx  + 2VVx .  (5) 

Specifically, upon setting v = u ( x  - a t ) ,  taking a first integral and choosing the constant of  integration to be zero 

(a necessary condition for solitary waves which asymptote to zero) one recovers (2). This fifth-order KdV equation 
((5) or scalings thereof) has been used to describe chains of  coupled nonlinear oscillators [130], hydro-magnetic 
wave propagation in plasmas [90,92] and most notably gravity-capillary shallow water waves [73,83,161]. In fact, 
Buffoni, et al. [25] have shown that (5) arises as the centre manifold reduction of  the exact formulation, using 
the Euler equation and free surface condition, near certain critical parameter values of  this water wave problem. 
Extended fifth-order KdV equations, (5) with extra nonlinear terms in u, Ux and Uxx on the right-hand side, have been 
considered by a number of  authors Derivations [34,37,53,96,97,124] arise in various more accurate approximations 

to waves on shallow water (see the references in [124] and [96]). Section 5.1 below reviews some recent results on 
an extended fifth-order KdV equation. A related derivation of  (2) by Christov et al. [50] is via a Bousinesq equation 
with second-, fourth- and sixth-order spatial derivatives, describing longitudinal vibrations in nonlinear chains. 

The other derivation of  (2) with f ----- u 2 is in describing the displacement u (x) of  a compressed strut with bending 
softness resting on a nonlinear elastic foundation with dimensionless restoring force proportional to u - u 2 [79,81]. 

Other related structural models which do not have precisely the form (2) are those modelling struts with geometric 
nonlinearity [82], torsionally strained rods [8,43,128,155] and thin cylindrical shells [80,122]. The latter of  these is 
discussed in Section 5.2. 

Another nonlinearity of  note is f ( u )  = u 3. Here a scaling of  (2) arises as steady state solutions of  

ut  = - y U x x x x  + Uxx + u - u 3, (6) 

which has been given the name Extended Fischer Kolmogorov (EFK) owing to its limit as y -+  0 [ 131,132]. When 
y > 0, the solutions of  interest are kinks, that is heteroclinic solutions connecting the equilibria at u = -{-1. The 

ODE on the fight-hand side of  (6) (in fact a trivial scaling of  it) also describes travelling-wave solutions of the 
nonlinear Schrtdinger equation with an additional fourth-order dispersion term 

i v  z -b OtVtt - -  E V t t t t  -[- [VI2v = 0 (7) 

[28,91]. The ODE is obtained by setting v ( z ,  t )  = u ( t ) e  icz+~°, assuming u to be real. 

Another important nonlinearity in (2) is the piecewise-linear function f ( u )  ---- (u  + 1) H ( - u  - 1), where H 
denotes the usual Heaviside function. This equation, describing travelling-waves of  the second-order-in-time partial 
differential equation (PDE) 

utt  q- Uxxxx -[- tt = f ( u ) ,  (8) 

was proposed as a model of  a nonlinearly suspended beam such as a suspension bridge [41,47,125]. The associated 
ODE also arises in studies on pipeline buckling with the piecewise linearity modelling the effect of  lift-off from an 
elastic bed [17], and in the compression of  a railway fine under the movement of  a train [115]. Chen and McKenna 
[47] also describe a smooth approximation of  this equation with f = 1 + u - e u, solitary wave solutions of  which 
appear to have soliton-like interaction behaviour. 
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2.2. Linearisation and normal forms 

In order to examine the structure of  homoclinic solutions to (2) the first step is to consider its linearisation. 
Eigenvalues )~ of  the linear problem satisfy the characteristic equation )d - b)~ 2 + a = 0, from which it can be 
inferred that the linearisation is as depicted in Fig. l. Note that the spectrum is symmetric under reflection about 
the imaginary axis. It is immediate from the definition of  reversibility that this symmetry in the spectrum holds 
for all symmetric equilibria [56]. In the figure, four distinct regions of  the parameter plane have been identified 

corresponding to qualitatively distinct linear dynamics. The four regions are bounded by the following codimension- 
one curves (see also Table 1): Co given by a = 0, b > 0 on which there are two zero eigenvalues and two 
real; C1 given by a = 0, b < 0 on which there are two zero eigenvalues and two imaginary; C2 given by 
b = 2V~, on which there is a double complex conjugate pair of  imaginary eigenvalues -t-i b~/b-~; and C3 given 
by b = - 2 ~ / a ,  on which there are two double real eigenvalues, symmetric with respect to the imaginary axis 

4-4-6-/2. 
The four curves meet at a codimension-two point a = b = 0 where the linearisation of  the system corresponding 

to (2) has four zero eigenvalues with geometric multiplicity one. Iooss [85] has derived and analysed a normal form 
respective to such a codimension-two point arising in general fourth-order reversible vector fields for which the 
origin is a persistent symmetric fixed point. In particular, he computes the singular scaling that has to be applied to 
the (codimension-one) normal forms with respect to Ci, i = 0, 1, 2, originally analysed by Iooss and Kirchgassner 
[88] and Iooss and Peroubme [89] (see also [63] for the techniques involved in normal form reduction). 

Let us briefly review these three one-parameter normal forms (more generally than in specific application to 
(2)) and what may be gleaned from them concerning the existence of  homoclinic orbits. First, however, note that 
in regions 1 and 2 displayed in Fig. 1, the origin is hyperbolic. This then implies that homoclinic orbits to the 

origin are of  codimension-zero. More precisely, a homoclinic orbit is formed by the intersection of  the unstable 
manifold of  the origin W u and the symmetric section S :=  fix(R). If  such an intersection is transverse, then 

I 

® \ 4  ' I 

+ 

a /G 

y +  
® 

+ 
Fig. 1. Linearisation at the origin of (2). 
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homoclinic orbits must persist under small reversible perturbation. Moreover, transversality of  two two-dimensional 

manifolds in R 4 is a generic condition (but often hard to prove in examples, although see Section 4.1 for a weaker 

requirement). 
Near Co. The eigendirections associated with the non-zero eigenvalues are unimportant in describing bifurcating 

solutions and hence centre-manifold reduction can be used to reduce to a planar system. On the centre-manifold, 
reversible systems with this linearisation and no further degeneracy can be reduced by normal form analysis to the 

nonlinear oscillator system [88, Section 3.1] 

21 = x2, 22 = ~ cj (N)x~. (9) 
j= l  

Here N is a single parameter unfolding the degeneracy with N > 0 corresponding to the near-zero eigenvalues being 

real (region 2). Upon truncation to lowest order (assuming appropriate normal form coefficients cj (N) are non-zero) 
and application of  a rescaling in which Xl and x2 become O(N), (9) becomes 

3 2 (10)  Xl : X2, 22 = sign (N) Xl -- ~x 1 . 

For N > 0, (9) possesses a unique, symmetric homoclinic solution xl (t) = sech2(t/2). Note that the reversibility 

R in (9) and (10) has been reduced to x2 --+ -x2 .  
A further reversibility of  the form - R  would be reflected in the right-hand side of  the second equation of  (9) 

being odd. Hence the truncated normal form would read 

971 = X2, 22 = sign(/*) Xl --  fix 3, (11) 

where fi = + 1. If  fi = -- 1 then there is an R-symmetric pair of  homoclinic solutions Xl (t) = -t-sech(t) existing 
for N > 0. Given the other sign of  fi there are no homoclinic solutions of  the normal form. 

In general, it is not true that solutions of  a normal form truncated at any order persist under a perturbation that 
returns to the original system, unless it can be proved that the truncated normal form is a topological normal form 

(or versal unfolding); see, e.g. [106, Section 2.5]. For the planar normal forms (10) or (11) it is not hard to show 
the persistence of  the homoclinic solution for/x > 0 since the equilibrium is hyperbolic and W u and $ intersect 
transversally (see [88 Section 4; 98 Proposition 5.1]). 

Near C1. Iooss and Kirchgassner [88, Section 3.2] derive the four-dimensional normal form in two real variables 
Xl and x2 and one complex variable z 

21 = X2, 22 = ~ ( N ,  Xl ,  [Z12), 

= izq~(N, xl, Izl2), z = --izq~(N, xl,  [z]2), (12) 

where q~ and ~ are arbitrary order polynomials in their arguments. The system has two conserved integrals 

Xl 

K : = l Z [  2 and 

0 

A truncated normal form is obtained upon taking 

~ ( N ,  Xl ,  Izl 2) = Cl (N)Xl  -Jr c 2 ( N ) x  2 -I- dN(N)lzl 2, q/(N, o~0, Izl 2) = ~'0(N) + Yl(N)Xl .  

If  the choice K = 0 is taken for the first integral, then under a combination of  the signs of  the coefficients of 
Cl and c2 which corresponds to region 3 of  Fig. 1, there is a sech 2 homoclinic solution (or a pair of  sech so- 
lutions if the system additionally has ( -R)-revers ing symmetry and the correct sign of  the cubic coefficient of  
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q~). However, in this case the question of persistence is much harder because the equilibrium is not hyperbolic 
in region 3 and in general we do not expect these solutions to persist when we add small reversible perturba- 
tions to the normal form. See Section 3.3 for a further discussion of homoclinic orbits in this region. However, it 
is known that the normal form possesses a large class of solutions that are homoclinic to periodic orbits, which 
may be parametrised by the ampfitude of the limiting periodic orbit. However, for a class of fourth-order equa- 
tions including (2) with f = u 2 it is known that the limiting periodic orbit of amplitude zero (the equilibrium 
at the origin) does not have a homoclinic connection [4,120]. For (2) it has been shown both via asymptotics 
and rigourously that the amplitude of the periodic orbits to which homoclinic connections occur is an exponen- 
tially small function o f / z  [7,66,134,147] and hence cannot be captured by the normal form (12) truncated to 
any order. These results have been generalised by Lombardi [118,119] to cover generic reversible systems whose 
normal forms are given by (12), which includes the exact formulation of capillary-gravity water waves (see also 
[11,146,148]). 

Near C2. Iooss and Peroubme [89] analysed solutions of the following normal form originally derived in [63]. It 
is expressed in terms of two complex variables zl and z2 

Zl = io90Zl -}- Z2 --I- iZl @0(/Z, ]ZI 12, (i/2)(ZlZ2 -- ZlZ2)), 
22 = iW0Z2 + iZ2~0(/Z, [Zl 12, (i/2)(Z122 -- ZlZ2)) + Zl ~I(/Z, 1Z112, (i/2)(Z122 -- 2~Z2)). (13) 

Here ~0 and qbl are arbitrary order real polynomials in their arguments, -4-090 are the values of the imaginary 
eigenvalues on C2 and/z is an unfolding parameter, with/z < 0 corresponding to region 2 (four complex eigenvalues) 
and/z > 0 to region 1 (four imaginary eigenvalues). This normal form is rotationally symmetric, that is, invariant 
under (zl, z2) -+ (zle i~, z2e i4~) as well as the reversibility z2 ~ -z2 ,  t --+ - t .  Moreover, (13) has two conserved 
integrals 

Izll 2 
P 

: =  Z l ~ 2  - -  ZlZ2 and H := ]z2[ 2 - [ ~l(/z,  s, K) K ds. 

0 

A truncated normal form is derived by replacing P and Q by the first-order terms in a Taylor expansion 

~ O ( # , u , v ) = P l l Z + p 2 u + p 3 v ,  ~l(lZ, U , v ) = q l l z + q 2 u + q 3 v .  (14) 

By further reduction to polar co-ordinates and seeking periodic solutions, Iooss and Perou~me argue that if q2 is 
negative, the so-called subcritical case, then a one-parameter family (orbit of the rotation group) of homoclinic 
solutions bifurcates for/z < 0. These solutions are of the form of 'envelope' homoclinic solutions with oscillating 
tails zl (t) = A sech(Bt) exp(io90), for constants A, B and o9 related to the coefficients of the normal form. In 
contrast, in the supercritical case there is the bifurcation of homoclinic orbits to periodic orbits for/z > 0. 

Now, in the subcritical case, the homoclinic solutions exist in the parameter region where the origin is hyperbolic. 
Hence, we should expect that transverse homoclinic solutions to the truncated version of (13) persist. It is not diffficult 
to see that given a single reversibility, two solutions among the one-parameter family form transverse intersections 
between W u and S. However, to show that these transverse symmetric solutions persist is actually non-trivial since 
the size of the terms ignored in the truncated normal form is not small compared with the bifurcating solutions [89, 
Section IV.3]. If  there is another reversibility - R  then there is another symmetric section and two more homoclinic 
solutions which are ( -R)-symmetr ic  will also persist. 

Note that each of the normal forms (9), (12) and (13) is equivalent to a completely integrable conservative system 
no matter to what order they are truncated. This explains why, at least for the non-planar normal forms (12) and 
(13), they can never be topological normal forms for general reversible systems with the given degeneracy and why 
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one has to look at the persistence of homoclinic orbits separately in each case. Note also that the normal form (9) 

always gives the small amplitude bifurcation of homoclinic solutions, whereas for (11) and (13) there is a condition 

to check. This brings us to our first open problem. 

Problem 1. Analyse an unfolding of the transition between super and sub-critical cases for the normal forms (11) 

and (13). 

For the bifurcation near C2, this question has been partially addressed by Dias and Iooss [59] and Iooss [86] who 

consider the degenerate case when q2 vanishes in (14). 

Near  C3. There is no small-amplitude bifurcation since the equilibrium remains hyperbolic. The nature of the 

equilibrium changes from being a saddle to being a saddle-focus (from four real to four complex eigenvalues) as one 

crosses C3 from region 2 to 1. Moreover, owing to hyperbolicity there is no barrier to finite-amplitude homoclinic 

orbits making such a crossing. Nonetheless, as we shall see in the example in Section 5.1, there is a dramatic 

non-local bifurcation which occurs causing the immediate birth of an infinite multiplicity of homoclinic orbits. This 

bifurcation has been partially analysed for a specific form of HamJltonian system in [44]. For the non-Hamiltonian, 

non-reversible case, the equivalent (codimension-two) bifurcation was analysed by Belyakov [13]. In [14] this was 

Table 1 
A summary of the different parameter regimes represented in Fig. 1 

Codlmension Eigenvaines Name Theory Application 

Co One 0, 0, ±A Hamilton±an pitch- [88] [98] Water waves [3,15,37]; twisted 
fork; reversible Takens- rods [155] 
Bogdanov 

C1 One 0, 0, ±iw 'Hamilton±an pitchfork- Normal form [88]; homoclin- Fifth-orderKdV [7,66,147]; water 
Hopf'; 'reversible ics to periodics [118] waves [11,146] 
Takens-Bogdanov- 
Hopf' 

C2 One :kico, ±±co, Hamiltonian-Hopf; [24], [87], [89], fifth-order KdV [37,67]; water 
reversible 1:1 resonance waves [24]; nonlinear struts [79]; 
Hopf twisted rods [155]; cylindrical 

shells [80] 
Water waves [25]; fifth-order KdV 
[23] 

C3 One EL, -4-A 'Belyakov-Devaney' 

0 Two 0, 0, 0, 0 Quadruple zero point (4 x 
4 Jordan block) 

1 Zero :kX ± i~o Saddle-focus 

2 Zero 4";%1, ±A2 Saddle 

3 Zero iX,±iw Saddle-cen~e 

4 Zero ±i~l,  ±iw2 Focus 

Generic dynamical systems 
[13,14]; special Hamiltonians 
[441 
[85] 

General reversible [36,71,72]; 
conservative [55,57,108]; 
variational [26] 

Uniqueness, e.g. [5]; orbit flip 
[ 139]; Hamiltonian multiplic- 
ity [77,1521 
Hamiltonian case 
[101,102,109,129] 

No homoclinics known; gen- 
eral dynamics [9,140] 

Water waves [98]; twisted rods 
[43,155] 
fifth-order KdV [23,37,161]; Wa- 
ter waves [58,60]; struts [81,82]; 
beams [41]; EFK [131,132]; 
fourth-order NLS [28,91] 
KdV and NLS e.g. [1]; fifth- 
order KdV [6,23,37]; optical fibres 
[139]; X (2) optics [30]. 
Fifth-order KdV [4,70]; H6non- 
Heiles [51,113]; double pendu- 
lum [129]; three-body problem 
[112,129]; string dynamics [129]. 

Names in quotations are proposed new names. In each case we give a (partial) fist of references to both theory and application of 
homoclinic orbits in reversible systems with the given linearisation. 
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given the name 'broom' bifurcation owing to the infinity of loci of homoclinic orbits becoming tangent to the primary 
branch (e.g. see Fig. 4, for P close to -2 ) .  In the conservative case, the dynamics close to a homoclinic orbit in 
region 1 was originally analysed by Devaney [55] (see Section 4.1), therefore a suitable name for the bifurcation 
upon crossing C3 (at least for conservative systems) might be 'Belyakov-Devaney'.  

In the following section, we review more generally what is known about homoclinic orbits to equilibria with the 
linearisation in each of the parameter regions of Fig. 1. Table 1 summarises this information and the normal form 
results outlined above, together with a (partial) list of references to applications. 

3. The four-parameter regions 

Recall that homoclinic orbits to hyperbolic equilibria are of codimension-zero in reversible systems. Furthermore, 
it has been proved by Devaney [56,57] that each transverse homoclinic orbit must be accompanied by a one-parameter 
family of periodic orbits at fixed parameter values. The periodic orbits accumulate on the homoclinic orbit with 
period approaching infinity. That homoclinic orbits are generic and accompanied by families of symmetric periodic 
orbits is also true for conservative systems, reversible or otherwise [15@ However, the transversality required for 
persistence in the conservative case is different; that the stable and unstable manifolds intersect transversally within 
a level set of the conserved integral. 

We shall now consider the existence of homoclinic orbits and the implications thereof in each of the regions 
1-4. Although we have systems of the form (2) in mind, our considerations will apply more generally to reversible 
systems in 1~4 having the given linearisation at the origin. At the same time, upon appealing to the Homoclinic 
Centre Manifold Theorem, much of what we say will apply to higher-dimensional systems also. 

3.1. The saddle-focus case; multiplicity 

In region 1, where the origin is a saddle-focus, HS.rterich [71,72] shows that the existence of one transverse 
symmetric homoclinic orbit implies the existence of infinitely many others (see also [36]). The extra homoclinic 
solutions are like multiple copies of the primary orbit separated by finitely many oscillations close to the equilib- 
rium. Specifically, there are infinitely many symmetric N-pulses for each N > 1. Here, an N-pulse, or N-modal, 
homoclinic orbit is defined to be contained in a tubular neighbourhood of the primary orbit F in phase space, 
crossing a transverse section to F N times. 

The method of proof in [71] is to employ a Shil'nikov-type analysis (see, e.g. [106,142,158]). Specifically, one 
assumes the existence of a primary homoclinic orbit and then C 1 linearises the system in a neighbourhood of the 
equilibrium at the origin (which is possible in this case due to a theorem of Belitski [12]). The spiralling of the 
linear dynamics caused by the complex eigenvalues is then used to show that the neighbourhood of the primary 
homoclinic orbit in the unstable manifold W u cannot fail to intersect appropriate pieces of the symmetric section S 
infinitely many times. 

It is possible to label each N-pulse orbit so constructed by a string of integers N(il,  i2, . . . ,  iN-l) ,  in C N, 
where each in counts the number of oscillations near the equilibrium between passages close to F.  For a class of 
conservative reversible systems including (2) with f = u 2, it is possible to make this labelling precise [23,44]. 
An interesting question is for which strings do there necessarily exist orbits. Due to reversibility, all N-pulses 
constructed in this way will have symmetric labels; in = i N - n  for all 1 < n _< N - 1. Moreover, there are 
further restrictions. The lowest N for which the combined results of [36,71] do not give N-pulses corresponding 
to every possible symmetric string of N positive integers is N = 6. Specifically, it was argued in [36] that given 
il and i2 then it can only be guaranteed that there are 6-pulses of the form 6(il, i2, i3, i2, i l)  for finitely many i3, 
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unless il = i2, il = i3 or 3(il,  i2) exists for some other reason. That this non-existence is not a property of  the 
construction, was backed up by careful numerical experiments in [36] on Eq. (2) with f = ½ (u 2 + u~2). Note that 
the corresponding dynamical system is reversible but not conservative. Recent work by Sandstede [137], using a 
Lyapunov-Schmidt  type method due to Lin [114], gives a more precise statement. For 6-pulses this gives that for 

each kl, k2 E N, there exists M ( k l ,  k2) such that 6-pulses with labels 6(n, n q- kl, n + k2, n + kl, n) exist for all 

n > M ( k l ,  k2). 
If  the system is conservative, then there is a different theory describing the dynamics in a neighbourhood of  a 

saddle-focus homoclinic orbit, due originally to Devaney [55], see also [109,158]. This theory shows that given 
transversality (in the conservative sense mentioned above) then within the level set of  H containing the equilibrium 

there is a Smale horseshoe; specifically shift dynamics associated with an infinite number of  symbols. Although not 
explicitly stated in Devaney's analysis, inherent in this construction is the existence of  infinitely many N-pulses, one 

orbit corresponding to each possible string N ( i l ,  i2 . . . . .  i N - l )  [14,23]. Hence for systems which are conservative 
in addition to being reversible (like (2) with f a pure function of  u) there are a greater multiplicity of  multi-pulse 
orbits than could be inferred from the reversible structure alone, both asymmetric and symmetric. Upon adding 
a perturbation that breaks the conserved quantity but preserves reversibility, clearly the asymmetric orbits should 
instantaneously disappear because they are of  codimension-one for the reversible system. However, there is an 
interesting open question about what happens to the extra symmetric solutions, because they should persist if they 
involve the transverse intersection of  W u and S:  

Problem 2. Consider the reversible system u "  - bu" ÷ au = (1 - 0t)U 2 q- 0tU t2.  When ot ---- 0, this is a conservative 

system (with conserved quantity (4)) and existence of  a primary homoclinic solution is known for all a, b such that 
the equilibrium is a saddle-focus [26]. Moreover, near C3 the primary solution is transverse. What is the unfolding 
of  all symmetric 6-pulse homoclinic solutions for small ot > 0? 

A related question is what happens to the existence of  N-pulses upon perturbing away one reversibility in a 
system with two reversibilities such as that equivalent to (2) with f = u 3, while the system remains conservative. 

The entire dynamics in a neighbourhood of a transverse saddle-focus homoclinic orbit in reversible systems is 
not completely understood. To date, it is not known whether Smale horseshoes necessarily exist or not. However, we 

do know (see the comments at the start of  this section) that there is a one-parameter family of  symmetric periodic 
orbits on each homoclinic orbit (primary or N-pulsed). Moreover, Devaney [57] has shown that, due to the complex 
eigenvalues at the equilibrium, the manifold of  periodic orbits spirals as it approaches the primary homoclinic F .  
Furthermore, for systems in R 4 he shows that in this manifold the periodic orbits change from being hyperbolic 

orientable to elliptic to hyperbolic non-orientable and back again infinitely often. (With the Homoclinic Centre 
Manifold Theorem on board, it is likely that similar results apply for reversible systems in R 2n for any n > 2.) The 
spectrum cr of  a reversible periodic orbit necessarily has two Floquet multipliers at ÷ 1 and must be symmetric. In 
R 4 this implies ~r = {s, s -1,  1, 1} for some s c C. The elliptic case corresponds to non-real s, with Isl = 1 and 
s -1 = 7. The hyperbolic case corresponds to real s 7~ -4-1 and is orientable if s < 0 and non-orientable otherwise 
(the names being derived from the orientability of  the strong stable manifold of  the periodic orbit). For elliptic 

periodic orbits, each time s passes through a root of  unity there is a sub-harmonic period-adding bifurcation, as 
described by Vanderbauwhede [153]. So in each of  the (infinite number of) elliptic intervals on the manifold of  
periodic orbits accumulating on each of  the (infinite number of) homoclinic orbits there will be an infinite number 
of  sub-harmonic bifurcations of  periodic orbits. 

Problem 3. Describe the complete dynamics in a neighbourhood of  transverse saddle-focus homoclinic orbit in a 
reversible system. In particular determine whether or not shift dynamics necessarily occur. 
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3.2. The saddle case; uniqueness or multiplicity 

In region 2 of Fig. 1 the eigenvalues of the origin are real. Here, there is no a priori reason for multiplicity of 
homoclinic solutions. In certain cases, such as for (2) with f = u s, one can prove global existence and uniqueness 
of a symmetric homoclinic orbit in this region [23,44]. The dynamics in a neighbourhood of the homoclinic orbit 
is, in contrast to the saddle-focus case, rather simple. In particular, the one-parameter family of periodic orbits 
accumulating on a non-degenerate symmetric homoclinic orbit to a saddle are all of hyperbolic type. However, see 
the work by Fiedler and Turaev [64] and Section 4.2 for a codimension-one degeneracy caused by non-transversality 
that gives rise to elliptic periodic orbits. Note that homoclinic orbits to saddle equilibria can occur in planar reversible 
systems, where the interpretation of the one-parameter family of periodic orbits accumulating on a homoclinic orbit 
is intuitive. Consider for example the planar systems (10) and (11) which are equivalent to the undamped, unforced 
quadratic and cubic duffing oscillators; see, e.g. [68, Fig. 2.2.3] for the phase portrait of the cubic case. 

In N4 or higher, however, there are other codimension-one mechanisms which can make the dynamics in the 
neighbourhood of a saddle homoclinic orbit non-trivial. These are associated with global changes to the homoclinic 
orbit and its stable and unstable manifolds occurring, without losing transversality or the linearisation at the origin 
changing. 

The first of these is the so-called orbit-flip bifurcation, analysed for reversible systems by Sandstede et al. [139], 
and applied to a model of pulse propagation in optical fibres with loss and periodic amplification [2,104,105]. The 
travelling-wave equation for this model is fourth-order, non-conservative, and is reversible under two reversibilifies 
R and - R .  An orbit flip occurs when the homoclinic orbit is tangent to the strong stable eigenvector of the 
equilibrium as t -+ ~ (and, due to reversibility, to the strong unstable eigenvector as t --+ -oc ) .  An unfolding of 
this situation for reversible systems is depicted in Fig. 2, which depicts the generic situation that the orbit flip causes 
the tangent vector to the homoclinic orbit at t = -]-oo to flip between components of the weak stable eigenvector. 
Using Lin's method, Sandstede et al. [139] show that for the sign of a perturbing parameter corresponding to the 
stable and unstable manifolds around the homoclinic orbit being non-orientable there is a bifurcation to infinitely 
many homoclinic orbits; a unique N-pulse for each N. If  the system has an additional reversibility - R  then the 
N-pulses are not unique and there exist pulses which are symmetric under --R as well as R, given a R-symmetric 
primary orbit. 

One of the non-degeneracy conditions for the reversible orbit flip is that the unique bounded solution of the adjoint 
variational equations around the homoclinic orbit ~ ( t )  behaves generically. That is, it converges to zero according 
to the weak stable and unstable eigenvalues as t --+ 4-oo. It was remarked in [139, Remark 2.1] that this condition 
is automatically violated for conservative systems which can be written in Hamiltonian co-ordinates, because 

(t) = V H (g (t)) and hence the adjoint and the homoclinic orbit must both undergo orbit flips simultaneously. The 
analysis of orbit flips in the Hamiltonian reversible case is incomplete at present, but an example (see Section 5.1 
and [37]) suggests that the bifurcation of N-pulses may occur on both sides of the critical parameter value. This 
brings us to another open question. 

Problem 4. Are there examples of orbit flips for non-reversible Hamiltonian systems or non-symmetric homoclinic 
orbits of Hamiltonian systems? If  so, presumably the property that the orbit switches between components of both 
the weak stable and unstable manifolds simultaneously is broken. An analysis would be interesting. 

The switching of components of the weak stable eigenvectors of the adjoint linear problem by 7t(t) in the limit 
t -+ 4-oo is referred to as an inclination-flip bifurcation. Our statement about orbit flips in the Hamiltonian reversible 
case is that inclination and orbit flips must occur simultaneously. For general (non-reversible, non-conservative) 
systems, orbit-flip and inclination-flip homoclinic bifurcations are independent codimension-two events. However, 
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Fig. 2. The orbit-flip bifurcation for reversible systems in four-dimensions. Half of each homoclinic orbit is depicted from the symmetric 
section $ onwards, by projecting out the strong unstable direction. 

their analyses [54,78,99,135] lead to almost identical conclusions about the number of  separate cases, the existence 

of  horseshoe dynamics and the bifurcation N-pulses.  

P r o b l e m  5. Can inclination flips occur for reversible systems? If  so are there examples and will  an analysis reveal 

a similar bifurcation result to the reversible orbit flip? 

Final ly in this section, we note that the orbit flip is a codimension-one bifurcation that gives rise to an open set 

of  parameter  values for which there exist infinitely many homocfinic orbits. This suggests that there may be some 

codimension-zero property of  a primary homoclinic orbit  which is 'activated'  by the orbit flip and that whenever 

this property is true then it can be inferred that there is infinite multiplicity. We have already mentioned that orbit 

flips cause the stable and unstable manifolds (specifically their tangent bundles around the homoclinic trajectory) 

to switch from being orientable to non-orientable. However, the planar centre manifold around the homocfinic orbit 

remains orientable on both sides of  the flip point [139]. 

For  the conservative case, there is a codimension-zero theory that gives multiplicity and shift dynamics,  namely 

that of  Holmes ([77], (see also [158, Section 3.2e(ii)]). Here, the assumption is the existence of  at  leas t  two  
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homoclinic orbits satisfying certain conditions on the directions in which they asymptote to the saddle. Then, it 
can be shown that there is a Smale horseshoe in the dynamics in the level set containing the saddle. Although not 
explicitly stated in the theory, within this construction it is clear that there must be embedded N-pulse homoclinic 
orbits for each N 6 N. See also [152] for the dynamics in the neighbourhood of multiple homoclinic orbits to a 
saddle in conservative systems. 

Problem 6. Is there a simple topological characterisation that can differentiate between homoclinic orbits to saddles 
in reversible systems that are locally unique and those that are accompanied by horseshoes and N-pulses? 

3.3. The saddle-centre case; isolation or cascades 

In region 3 of Fig. 1 the origin is no longer hyperbolic because of the pair of imaginary eigenvalues. Hence 
questions of persistence of homoclinic orbits are more subtle. A complete analysis of homoclinic orbits with this 
linearisation for reversible systems is not known, but Mielke et al. [129] and also Lerman and co-workers [101,109] 
have analysed the situation for Hamiltonian systems in N4. These results have been partially extended to arbitrary 
dimensions by Koltsova and Lerman [102]. Mielke et al. show that given a primary homoclinic orbit to a saddle- 
centre that is symmetric under a reversibility then, under certain conditions, for each N there are infinitely many 
N-pulses occurring at isolated parameter values. The structure of homoclinic orbits is termed a cascade, as the 
parameter values of all MN-pulses, for M > 0 accumulate on those of each corresponding N-pulse for N > 0. 

Another consequence of the analysis is the existence of n-periodic orbits for all n and smale horseshoes in nearby 
level sets of the Hamiltonian function. The results rely heavily on some non-degeneracy assumptions which in [ 129] 
are expressed in a specific form assumed of the Hamiltonian. The key assumption is a condition on coefficients of 

the quadratic part of the Hamiltonian, viz if 

co (p2 + q~) + 2 (P2 - q22) + h.o.t, H=~ 
then co)~ > 0. Under the opposite sign of co)~, which is the case for Hamiltonian versions of (2) and for capillary- 
gravity water waves [3,127], reversible homoclinic orbits are not accompanied by a cascade unless other symmetries 
force this. Furthermore, for (2) with f = u 2, Amick and McLeod ([4], see also [70]) have proved that there are no 
symmetric homoclinic orbits to the equilibrium anywhere in region 3. 

One thing to note about the analysis in ~4 is that homoclinic orbits to the origin must connect the one-dimensional 
(strong) stable and unstable manifolds W s and W u of the saddle-centre. In general for conservative systems, such a 
connection (the identification of two lines in a level set ------- N 3) would be of codimension-two. However, reversible 

homoclinic orbits require an intersection between one of these one-dimensional manifolds and the two-dimensional 
S in N4. Hence, symmetric homoclinic orbits are of codimension-one in this parameter regime. Since the analysis 

of Mielke et al. [129] describes homoclinic orbits occurring as one parameter varies, then reversibility is equally 
important in their construction as is the Hamiltonian structure. In fact, Koltsova and Lerman [101] describe an 
unfolding of a codimension-two non-symmetric homoclinic orbit to a saddle-centre in four-dimensional Hamiltonian 
systems. We are left with the interesting question: 

Problem 7. Does the analysis of Mielke et al. apply in the reversible case, independent of Hamiltonian structure? 

By analogy with the known results on the dynamics near a saddle-focus homoclinic orbit, a natural conjecture 

would be that the reversible case also leads to cascades, but the multiplicity (and existence of horseshoes) may be 
different from the conservative case. 
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It has already been remarked that the normal form (12) gives rise to homocfinic orbits to periodic orbits in a 
neighbourhood of the curve C1 in region 3. Given that there are imaginary eigenvalues at the origin, the reversible 
Lyapunov Centre Theorem [56] gives the existence of a one-dimensional family of periodic orbits surrounding the 
origin for each parameter value in region 3. Homoclinic orbits to periodic orbits connect the unstable manifold of 
one of these periodic orbits to themselves. (Note that symmetric heteroclinic orbits connecting different periodic 
orbits are not allowed by reversibility. Also, in conservative systems generically each periodic orbit will belong to 
a different level set, in which case asymmetric heteroclinic orbits are ruled out also.) Note the codimension of such 
homoclinic connections. In the symmetric case we require the two-dimensional (strong) unstable manifold of the 
periodic orbit to intersect the two-dimensional set S. Hence symmetric homoclinic orbits to any given periodic orbit 
are persistent (codimension-zero). It is not difficult to see that non-symmetric homoclinic orbits in the conservative 
case are also codimension-zero. Also, for the conservative case, a simple argument sketched in [40, Section 2.3.] 
shows that if such a homoclinic orbit to a periodic orbit is transverse (in the conservative sense) then the Smale- 
Birkoff Homoclinic theorem applies, giving rise to a homoclinic tangle and consequently infinitely many N-pulse 
homoclinic orbits to the periodic orbit. 

Problem 8. Are symmetric homoclinic orbits to periodic orbits accompanied by N-pulses and horseshoes in the 
reversible non-conservative case also? 

3.4. The focus case; non-existence 

In this case, at least while the linearisation at the origin is not strongly resonant and the system remains in normal 
form, then it is known that there cannot be any homoclinic orbits. Nonetheless, the dynamics in a neighbourhood 
of the origin may be quite complex, due to there being families of elliptic periodic orbits with consequent resonant 
sub-harmonic bifurcations, see [9,140] for the details. The situation when there exist strong resonances (eigenvalues 
-t-o91, -t-o92 where n = 1, 2, 3 or 4) is more subtle and remains open. 

4. Global phenomena 

4.1. Existence, transversality and stability of travelling waves 

The work reviewed in Section 3 generally concerns the dynamics and N-pulses given the a priori assumption of 
a primary symmetric homoclinic orbit. In order to apply such theory rigorously to an example, one needs first to 
prove existence of this primary orbit. Then it must be shown that this solution satisfies the required non-degeneracy 
assumptions, the key property being transversality. 

The simplest form of existence proof is an explicit closed form solution. Such solutions were already obtained 
for the normal form equations (10)-(13). Also, in the work by Sandstede et al. [139] and Mielke et al. [129] cited 
above, the theory of orbit flips and homoclinic cascades were rigorously applied to example systems for which there 
is an explicit solution, calculations on which enabled the non-degeneracy conditions also to be checked. 

Another method for showing existence of homoclinic solutions is analytic shooting. This has been used to great 
effect by Peletier and Troy [131,132] to show existence of infinitely many homoclinic and heteroclinic steady 
solutions of the EFK equation (6). Amick and McLeod [4] also used shooting arguments (in the complex plane) 
to show non-existence of symmetric homoclinic orbits of (2) with f = u 2 in region 3. A method due to Hofer 
and Toland [76] was used in [20,44] to show the bifurcation of infinitely many 2-pulse homoclinic orbits given a 
transverse homoclinic orbit crossing the curve C3 for a class of Hamiltonian Systems including (2) with f = u 2. 
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In all these examples, although the problem was Hamiltonian, explicit use was made of the symmetric section. For 
example, in [44] initial conditions were varied in the unstable manifold of the origin to hit the symmetric section 
after a finite time. But it was the particular Hamiltonian structure that was used to argue that such intersections must 
occur infinitely many times. It was also possible to show the required transversality of the primary orbit for that 
example [23] using a shooting method originally used to show uniqueness of symmetric homoclinic orbits in region 
2 for a similar class of equations [5,6]. See also [21,27,74] for other multiplicity results obtainable via shooting. 

Conservative systems usually arise via some kind of variational principle. The calculus of variations applied to 
such a weak formulation of the problem can often lead to the inference of at least one symmetric homoclinic orbit. 
One such approach is to find solutions as critical points o f  a functional using the Mountain Pass lemma [19] and 
the idea of 'Concentration-Compactness' [52,116,117]. For (2) with f = u 2, for example, homoclinic solutions 
are given precisely by critical points in the Sobolev space H 2 (R) of the functional 

if J (u )  = ~ {Ju"[ 2 + blu'l 2 + au 2 + (2/3)u3}dx.  (15) 

Buffoni [22] has used this structure to show the existence of at least one homoclinic orbit for all a, b inside region 1. 
These results were substantially improved by Buffoni and S~r~ [26] who showed that there exist infinitely many 
homoclinic solutions for a class of functionals including (15) at parameter values for which the origin of the asso- 
ciated equation is a saddle-focus. The infinite multiplicity is in the sense of an alternative theorem. Either the stable 
and unstable manifolds around the primary homoclinic orbit are topologically transverse (a weaker non-degeneracy 
condition than the analytic transversality required of Devaney's theory [55]), then shift-dynamics occur with the 
inherent infinity N-pulse orbits described in Section 3.1. The other possibility is that the manifolds are identified, so 
that there is a continuum of primary orbits. Buffoni and Groves [24] have used these methods to show infinite multi- 
plicity to the right of C2 in Fig. I for any Hamiltonian perturbation of the normal form (13). Mountain Pass arguments 
have also been used to show existence for other fourth-order equations [37,47] and systems of equations [45]. 

Another variational technique is to pose a constrained optimisation problem. For example, homoclinic solutions 
of (2) with f = u 2 are described by minimizers of the functional 

E(u)  = f{ l lu" l  2 +blul l  2 + (2/3)u 3 } 
t /  

R 

subject to the Lagrange multiplier constraint f~ uZdx = )~ [110]. 
Other formulations treat PDEs such as (5) directly [ 10,84,110,111]. Constrained minima of the appropriate 

functionals give solitary wave solutions which are homoclinic orbits of the appropriate ODEs. The real power of 
this constrained minimisation method is that it also allows one to prove stability of the travelling-wave solutions of 
the PDE. However, the method always describes 'ground states' of the ODE and therefore cannot find N-pulses. 

Problem 9. For reversible conservative systems for which existence can be proved by variational methods, is the 
primary homoclinic orbit or 'ground state' necessarily symmetric? 

Both the concept and calculation of stability of solitary waves depends crucially on the particular PDE setting 
in which the travelling-wave ODE system arises. For example, stability of homoclinic solutions of (2) is different 
depending on whether they arise from (5)-(8) or from the buckling of struts [137]. A general review of the stability 
of solitary waves is beyond the scope of this article. We do however mention a recent work by S andstede [137,138] 
that if a primary homoclinic orbit is stable, then in certain settings, a Belyakov-Devaney-type bifurcation can cause 
half of the bifurcating N-pulses to also be stable. A similar result was also proved by Sandstede et al. [139] for the 
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model  optical system at the point  at which it undergoes an orbit flip. Finally, we remark on some recent numerical 

results by Chen and McKenna [46,47] suggesting that the primary and certain stable N-pulse  solutions of  (8) with 

the exponential  nonlinearity collide inelastically like solitons of  integral PDEs. 

4.2. Coalescence and bifurcation 

We mentioned earlier that the transversality required for the persistence of  homoclinic orbits is different for 

conservative and reversible systems. Given a symmetric homoclinic orbit F of  a system that is both conservative 

and reversible, there are two codimension-one ways to lose transversality of  W s and W u (within a level set), without 

a local bifurcation occurring. The best  way to see this is to look at a Poincarb section containing the symmetric 

section S ,  see Fig. 3. The consequences of  these losses of  transversality were analysed heuristically in [23], and 

subsequently put on a rigourous foundation by Knobloch [100]. 

In four dimensions,  if  W u and W s are non-transverse, then they must have a common tangent direction other than 

the tangent vector to the homoclinic orbit  yl .  At  the symmetric point g (0) this other tangent direction w must  either 

be symmetric or anti-symmetric.  That is either R w  = w or R w  = - -w .  The former is termed a coalescence and 

leads to the disappearance of  two symmetric homoclinic orbits under parameter  variation (see Fig. 3). The latter 

case causes the bifurcation of two asymmetric  homoclinic  orbits from the primary symmetric one. That the primary 

orbit  must  persist  thi'ongh this bifurcation is apparent since W u continues to intersect S transversally. For reversible 

systems that are not conservative, in general there is no bifurcation caused by  the second form of  non-transversality. 

(a) Coalescence 
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Fig. 3. Unfolding under parameter variation of coalescence and bifurcation 4 for conservative reversible systems in ~ . Depicted are the 
stable and unstable manifolds W s and W u and the symmetric section S in a two-dimensional Poincar6 section contained in a level set. 



174 A.R. Champneys/Physica D 112 (1998) 158-186 

The coalescence and bifurcation just outlined assume that the equilibrium is hyperbolic. In the case where it is a 
saddle, Fiedler and Turaev [64] have shown that the presence of a coalescence of homoclinic orbits in a reversible 
system causes the birth of periodic orbits of elliptic type. If  the equilibrium is a saddle-focus, then the dynamics in 
the neighbourhood of a coalescence are more complex. 

Finally we remark that the two possibilities of the extra common tangent at $ for non-transversality can be used as 
conditions to check when attempting to prove transversality. This approach was used by Champneys and McKenna 
[41] on a piecewise-linear equation for which calculations could be performed explicitly. 

413. Numerics 

The preceding theory is usually not enough on its own to give complete information on homoclinic solutions. 
In general one has to rely on numerical methods for finding solutions. These methods can be categorised into 
three approximate classes: locating homoclinic solutions at fixed parameter values, continuation of solutions as 
parameters vary, and numerical integration of the PDEs for which the homoclinic orbit is a travelling-wave solution. 

There is now quite a large literature on methods for continuation of homoclinic (and heteroclinic) orbits in 
ODE systems (see [16,38,39,65] and references therein). The key idea is to mmcate the infinite time interval and 
apply projection boundary conditions onto the stable and unstable eigenspaces of the equilibrium. Solutions of 
the resulting two-point boundary value problem can be shown to be exponentially close as the truncation interval 
increases to non-degenerate homoclinic solutions of the original problem. Champneys and Spence [42] proposed a 
simplification of this method for reversible systems. Here, the solution is sought over a truncation to the half-interval 
with right-hand boundary conditions placing the solution in the symmetric section S. 

Also in [42] a numerical shooting method was proposed for locating solutions to this boundary-value problem at 
fixed parameter values. The shooting parameters are the truncation time and 'angle co-ordinates' which parametrise 
initial conditions at a fixed distance from the equilibrium in the unstable eigenspace, in order to satisfy the symmetric- 
section boundary conditions. This method has been successfully applied to (2) and related equations to systematically 
compute families of N-pulse homoclinic orbits [23,36,156]. For the solution of the initial value problems at each 
step of shooting, one could use a numerical integration method that preserves reversibility, e.g. [145], but in practice 
as solutions are sought over a finite time this is not necessary. Another possibility for finding and locating solutions in 
conservative problems with variational structure is to use numerical methods to compute extrema of the appropriate 
functionals, e.g. [47,48]. 

Direct time integration of PDEs is useful for providing numerical evidence on the stability and interaction 
properties of solitary waves. Finite difference methods are widely used, which should preferably respect the structure 
of conservative systems (e.g. [50,123,124]). Spectral methods have also been applied to good effect, e.g. [49,150]. 

5. Three  case studies  

5.1. Example 1: A fifth-order KdV approximation for gravity-capillary water waves 

The ordinary differential equation 

l~U it" -- b u  t' + a u  + 3u2 - t - / / , [ l (u t )2  -~- (t, tut) z] : 0 (16) 

was derived by Craig and Groves [53] as the travelling-wave equation for an extended fifth-order KdV equation 
modelling weakly nonlinear long waves on the surface of a fluid with surface tension. It is analysed extensively 
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Fig. 4. Schematic summary of global information on homoclinic orbits to the origin of (17) 

in [37] using a rmxture of the normal form analysis, generic argument, existence theory and numerical methods 
outlined above. Here we just summarise a few details as an illustration of the preceding discussions. 

When/~ = 0, (16) reduces to a scaling of the canonical fifth-order KdV travelling-wave ODE (2) with f = u a. 

This equation can be further reduced by changes of variable to one of the following one-parameter equations 

Y " + P S + Y - Y 2 = O  f o r a > 0 ,  (17) 

y m / + p y U _ y _ y 2 = O  fora  < 0 ,  (18) 

where P = -b~/-i5/2]al. 
Eq. (17) is written in the form of the dimensionless ODE modelling a strut on a nonlinear foundation [79,81], 

homoclinic solutions of which have been studied by a number of authors; the most complete account is in [23], see 

also Fig. 4. For P < 2 there is a unique, positive, even homoclinic solution. At P = 2 there is a Belyakov-Devaney 
bifurcation into an infinite multiplicity of N-pulses. Because the equation is conservative as well as reversible, these 

involve symmetric and asymmetric solutions. As P 6 (1.5, 2.0) is increased these N-pulses start disappearing, via 
a cascade of coalescences and bifurcations. It is a numerical observation that the coalescence and bifurcation points 

on symmetric branches occur at nearby parameter values. This is due to the spiked nature of the stable and unstable 
manifolds causing the two transitions sketched in Fig. 3 to occur one after the other. Similar pairs of bifurcations 

and coalescences in rapid succession were obtained asymptotically by Yang and Akylas [160] in the limit P --+ 2. 
At P = 2 there is the small amplitude bifurcation of two homoclinic solutions as described by the normal form 

(13). No homoclinic solutions are known for P > 2. 

In [29] numerical and asymptotic evidence is presented that half of the 2-pulse solutions of (17) for P c ( -2 ,  2) 

are stable as solutions of the PDE. These calculations are in keeping with the more general theory of Sandstede 
concerning the stability of N-pulses [137,138]. Moreover, the interaction properties of some of these stable solitary 
waves was investigated in [123]. 

For Eq. (18) it has been proved that there are no symmetric homoclinic solutions to the origin for any P < 0 
[4,70], and no homoclinic solutions at all for P sufficiently large and negative [4]. However, it is known that there 
are homoclinic solutions to periodic orbits, both single pulsed [7,18,66,134,147] and N-pulsed [35,40]. 
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The analytical and numerical evidence presented in [37] suggests that, broadly speaking, the structure of homo-  
cfinic solutions to (17) and (18) survives on adding the extra nonlinear terms to (16) obtained by set t ing/z  = 1. 
However, there is additional complexity. First notice that in region 3, where for /z  = 0 the dynamics are governed 
by (18) and there are no symmetric homoclinic  solutions, there is now an explicit solution [97] 

u(t) 3 (b + 1) sech2 (~3(2~ +1) ) = t (19) 

defined along the curve 

a = 53- (2b + 1) (b - 2), b _> -_12. (20) 

Numerical evidence suggests that this is the first of  a countable family of  curves on which there are solitary wave 

solutions in region 3, only the first one of  which is available in closed form [37, Section 4]. N o w  note that (20) extends 
into region 2, given by a > 0, b > (~-8-h-/15) for (16), where the origin is a saddle. Here (19) defines a homoclinic  
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Fig. 5. Numerically computed N-pulses of (16) close to the orbit flip: for a = 3.0 and (a),(b) b = 1.5; and (c),(d) b = 3.0. 
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solution decaying to zero corresponding to the strong stable and unstable eigenvalues. Hence, generically, upon 
transversally crossing (20) (and each of the countably many similar curves) in the parameter plane, we should expect 
an orbit-flip bifurcation to occur. Fig. 5 shows some numerically computed primary and N-pulses in this parameter 
regime which suggests that the bifurcation to N-pulses occurs on both sides of the orbit flip for this system (see [37, 
Section 5.] for more details). A conjectured complete unfolding of homoclinic solutions to (16) is given in Fig. 6. 

Problem IO. How much of the structure of homoclinic solutions of (16) survives for the exact Euler equation 
formulation of capillary-gravity water waves? 

In partial answer to this question, we remark that Dias et al. [60] have found N-pulses in a numerical investigation 
of the full problem. 

5.2. Example 2: Spatially localised buckling o f  cylindrical shells 

There is an evidence to suggest that long structures that buckle elastically tend to do so in a manner that is localised 
to some portion of their length (see, e.g. [79]). Such phenomena lend themselves naturally to a description in terms 
of homoclinic solutions of continuum equations posed over an infinite length. Owing to physical principles, these 
equations are typically both conservative and reversible. See the paper by van der Heijden and Thompson [155] 
in these Proceedings for an example describing the buckling of rods subject to end moment and tension (see also 
[8,43,128,151 ] ). Here we summarise results on modelling localised buckling in thin cylindrical shells [80,121,122]. 

The classical equilibrium equations for the in-plane stress 4) and displacement w in the post-buckling regime of 
an infinitely long cylinder with radius R and shell thickness t are given by the von K~laS.n-Donnell equations: 

Kav4 w -]- )~Wxx - Pqbxx = ttgxx~gyy -t- tOyyq}xx -- 2Wxyq~xy, (21) 

V4~) -}-flWxx = (Wxy) 2 -- WxxtOyy. (22) 
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Here V 4 denotes the two-dimensional bi-harmonic operator, x 6 N is the axial and y 6 [0, 2zrR) is the circumfer- 
ential co-ordinate. The parameters appearing in (21) and (22) are the curvature p :=  1/R,  

t¢ 2 : =  t2/12(1 - v2), 

where v is Poisson's ratio and the bifurcation parameter 

)~ :=  P / E t ,  

where P is the compressive axial load applied per unit length and E is Young's modulus. The form of solutions 
we are concerned with impose periodic boundary conditions in y and homoclinic boundary conditions in the axial 
direction x: 

(w, 49)(x, O) = w(x ,  2rrR), (w, q~)(y, x) -+  0 as x -+ 4-cx~. 

In [121,122] these equations were discretised circumferentially using a Galerkin spectral method, assuming that 
the solutions are even periodic in y and remain within the subspace corresponding to invariance under rotation 
through 2zc/s. Hence the following cosine functions are used: 

M M 

w(y )  = ~ a k ( x ) ~ ,  O(Y) = ~ b k ( x ) t l r ~ ,  
k=0 k=0 

where 

~ = c o s ( k s p y ) ,  k t N U { 0 } ,  s E N .  

This leads to a large system of 8(M + 1) equations 
In the x-direction, it has been observed experimentally [159] that buckling modes have one of  two symmetry 

properties about the central horizontal cross-section given by x = T, either symmetric 

w(x ,  y)  = w ( 2 T  - x ,  y) and qb(x, y) = fb(2r  -- x ,  y).  

or cross-symmetric 

w ( x , y ) = w ( 2 T - x ,  y W r c R / s )  and q O ( x , y ) = ~ b ( 2 T - - x , y + y r R / s ) .  

When stated in terms of  the ODEs obtained on Galerkin truncation, these symmetry conditions correspond to two 

different types of  reversibility. Hence, the methods reviewed in Section 4.3 for computing homoclinic orbits in 
reversible systems can be used. 

Fig. 7 shows examples of  symmetric and cross-symmetric solutions posed using asymptotic boundary conditions 
at the top of  the cylinder and symmetric-section conditions at the mid point. These solutions were obtained with 
M = 5, implying 48 ODEs. Solutions were continued as the load parameter P was varied using the methods outlined 
in Section 4.3, implemented in the code AUTO [61,62], and a good agreement with experiments was found. Actually 
the hard problem for (22) is to locate homoclinic solutions at fixed parameter values; see [121] for more details, 
including the computation of  N-pulse solutions. 

The theory of  N-pulse homoclinic orbits of  elliptic equations on infinite domains regarded as dynamical systems 
is still in its infancy, but see [133] for some results in this direction. Also see [127,157] and references therein for 
some general theory on homoclinic orbits in such systems. 
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Fig. 7. Symmetric and cross-symmetric h0moclinic solutions of the von Kfirm~in-Donnell equations. 

5.3. E x a m p l e  3: C o u p l e d  N L S  equa t ions  

Buryak and Kivshar [30] (see also [31,69,75]) consider the following system of two coupled NLS equations 
modelling spatial solitons in crystals with so-called X (2) nonlinearity: 

Ow OZw iOv 02v ½ 
i -~--f + r ~ -  - w + w * v = O , O ~ + s - ~  - ol v + w2=O,  (23) 
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The complex variables w (g, t) and v (g, t) represent, respectively, the first and second harmonics of  the amplitude 

envelope of  an optical pulse. Stationary solutions of  (23) satisfy 

r w  pr --  w + w v  = O, s v  tl - -  OltJ -t- 1 / / ) 2  = 0 ,  (24) 

where r, s ----- -4-1 and w ( t )  and  v ( t )  may be taken to be real [30]. Note that the system (24) is invariant under two 

reversibilities 

R : ( w , w ' , v , v  I)~-+ ( w , - w  1 , v , - v ' )  and S : ( w , w ' , v , v ' ) ~  ( - w , w  I , v , - v ' ) .  

It is also Hamiltonian with total energy 

w ~2 v I2 1 
H = r - - 2  + s--~-- + ~ ( 1 B Z u  - -  I?/tJ 2 - -  t O 2 ) .  

Depending on the signs of  r and s a variety of  homoclinic and heteroclinic phenomena can occur. When  r = - 1 

the phenomena of  interest are principally 'dark soli tons ' ,  heteroclinic orbits connecting non-trivial equilibria. Note, 

though, that in the case s = +1 these non-trivial equilibria have complex eigenvalues and there are infinite families 

of  N-pulse  orbits, by a slight adaptation of  the theory reviewed in Section 3.1 (upon identifying the two equilibria 

which are images of  each other under 7/z symmetry).  These N-pulses  include both heteroclinic and homoclinic 

orbits, referred to as b o u n d - s t a t e s  o f  d a r k  so l i tons ,  and an evidence is presented in [30,31] that these may represent 

stable solutions of  the travelling-wave equations. 

For  the case r = + 1, s = - 1  the origin is a saddle-centre. Numerical  results in [30] indicate a cascade of  

2-pulses occurring at isolated parameter  values, much as predicted by the theory of  Mielke et al. [129] reviewed in 

Section 3.3. It appears that these solutions 'converge '  on a pr imary homoclinic solution that exists only in the limit 

oe --+ cx~. Presumably N-pulses  may be found for higher N also. 

The case r = s = + 1 is perhaps the most interesting physical ly because the primary homoclinic solution most 

resembles a 'br ight '  soliton. Specifically at o~ = 1 there is the exact solution 

w = ( 3 / , ¢ / 2 ) s e c h 2 ( t / 2 ) ,  v = ( 3 / 2 ) s e c h Z ( t / 2 ) .  (25) 

It has been confirmed numerical ly in [30] that a branch of  homoclinic solutions containing this solution exists for all 

> 0. Furthermore it was proved by variational methods in [45] that there exists at least one homoclinic solution 

to the origin for all ot > 0. Note that at oe = 1, when (25) exists, the eigenvalues of  the origin form a double real 

pair, as on the curve C3 in Fig. 1. However, the linearisation is semi-simple and hence the eigenvalues pass through 

each other on the real axis rather than becoming complex. For  ~ < 1 it has been shown numerically by a number 

of  authors [45,69,75] that there are N-pulse  orbits, one for each N,  see Fig. 8. The numerical  results in [45] pose 

interesting questions as to the bifurcation of  these N-pulses  at o~ = 0 and ot = 1. At  o~ = 1, it appears that a 

degenerate bifurcation occurs owing to the semi-simple double eigenvalues. An  analysis of  this via Lin 's  method 

is currently under investigation by A.C. Yew, but prel iminary results suggest that the bifurcation of  N-pulses  can 

be proved to occur for a class of  systems containing this degeneracy. At  o~ = 0, the N-pulses  all appear to occur as 

singular perturbations of  the state where only v is non-zero. 

P r o b l e m  11. Describe theoretically the bifurcation of  N-pulses  for (24) with r = s = -t-1 at ot = 0. 

Unfortunately, these N-pulses  are not l ikely to be physical ly important, because numerical  calculations by 

Haelterman et al. [69] reveal them to be unstable as solutions of  the PDE system (23). 

Finally we remark that there are other forms of  reversible non-integrable travelling-wave systems arising from 

couplings between NLS-type equations for which there are multiplicities of  homoclinic solutions, e.g. [32,33]. 
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